Critical Dimensions for counting Lattice Points in Euclidean Annuli

نویسنده

  • N. Sidorova
چکیده

[MISSING]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical Dimensions for counting Lattice Points in Euclidean Annuli

We study the number of lattice points in R, d ≥ 2, lying inside an annulus as a function of the centre of the annulus. The average number of lattice points there equals the volume of the annulus, and we study the L1 and L2 norms of the remainder. We say that a dimension is critical, if these norms do not have upper and lower bounds of the same order as the radius goes to infinity. In [6], it wa...

متن کامل

On Tightest Packings in the Minkowski Plane

is satisfied for any two distinct points P, Q of L. Since the work of Thue on circle packings in the plane, many people have noted that the mesh of a lattice is the inverse of the density of its points and have asked whether there are arbitrary pointsets of maximal density satisfying the packing condition. C. A. Rogers [8] showed in 1951, for example, that for the Euclidean plane no packing is ...

متن کامل

A Polynomial Time Algorithm for Counting Integral Points in Polyhedra when the Dimension Is Fixed

We prove that for any dimension d there exists a polynomial time algorithm for counting integral points in polyhedra in the d-dimensional Euclidean space. Previously such algorithms were known for dimensions d =1,2,3, and 4 only.

متن کامل

Pascal’s Labeling and Path Counting

We first draw a Cartesian coordinate mesh on the two dimensional Euclidean plane so that each intersection point has integer coordinates. We call these intersection points lattice points. We want to label lattice points in an orderly fashion so that each label is determined by two of its neighboring labels. We proceed with the following rule. If the label given to a lattice point with coordinat...

متن کامل

Lattice Point Counting and Height Bounds over Number Fields and Quaternion Algebras

An important problem in analytic and geometric combinatorics is estimating the number of lattice points in a compact convex set in a Euclidean space. Such estimates have numerous applications throughout mathematics. In this note, we exhibit applications of a particular estimate of this sort to several counting problems in number theory: counting integral points and units of bounded height over ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008